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Abstract: 

Aims: Stock price prediction is notoriously tricky due to data complexities such as non-stationarity and noise. 

Methods: This literature survey was conducted in order to systematically evaluate how wavelet transforms enhance forecasting by 

improving data preprocessing for machine learning models. 

Findings: The review of hybrid wavelet-ML architectures (e.g., LSTMs, Transformers) finds that they consistently outperform 

standalone models by leveraging wavelets' powerful denoising and multi-scale feature-extraction capabilities. Despite their 

effectiveness, persistent challenges include parameter optimization, model interpretability, and overfitting. 

Implications: Future research priorities should include adaptive wavelet techniques and the development of more robust, 

transparent hybrid systems for practical financial applications. 

Keywords: Wavelet transform, time series data, machine learning, stock price prediction, denoise data, stock price 

trend.

1. INTRODUCTION 

1.1. The Challenge of Financial Forecasting 

Predicting financial time series, such as stock prices, 
foreign exchange rates, and commodity price 
movements, has historically been a rather challenging 
task. The high volatility and market uncertainty make it 
difficult for investors to achieve profits and predict stock 
performance [1]. They are highly complex and contain 
non-stationarity (statistical properties of the series 
change over time); a high noise-to-signal ratio that 
obliterates any underlying structure; a considerable 
degree of non-linearity, rendering linear models useless; 
and volatility clustering: significant returns are more 
likely to be followed by significant returns, and calm 
periods become quieter. So, they are susceptible to 
sudden changes or structural breaks against unforeseen 
economic, political, and social events [2]. These 
properties make financial forecasting difficult [3]. 

Some of the big questions that make financial 
forecasting different from other areas are. First, the 
competitive environment induced by time pressure and 
market efficiency concerns typically results in a low 

signal-to-noise ratio, particularly in the context of asset 
return predictability [4], so that imperfect forecasters are 
often the norm rather than a rarity [5]. For no 
predictability at all, the error implies that parameter 
estimates scale to order one [5]. Second, the mere 
strategy of using predictability can cause the predictable 
pattern to break down when prices move in response, 
leading to model-free instability [5]. Therefore, this type 
of volatility must be included in the QS analysis: even if 
we are predicting for a set of variables at one future 
period, there is still predictability, and no forecasting 
model can be best-performing at all times [5]. 

In financial markets, the non-linear and singsong 
nature of despisers such as dissection-of-scale is even 
more pronounced, making precise prediction less useful 
for some existing machine learning techniques due to 
these complexities [6]. Indeed, there are multiple 
dimensions in which financial forecasting is variable-
based and values that need to be future-looking whilst 
they do not exist at the moment [7]. Traditional 
statistical models, such as ARIMA (Autoregressive 
Integrated Moving Average) and GARCH (Generalized 
Autoregressive Conditional Heteroskedasticity), have 

Review Article 

mailto:GS67790@student.upm.edu.my
mailto:razaliy@upm.edu.my
https://creativecommons.org/licenses/by/4.0/


 
Majestic International Journal of AI Innovations 

Volume 1, 2025 

    
  

                                                        Lock and Yaakob  

 

2 

been dominant for quite a long time in financial time-
series analysis. While these methods constitute the main 
framework for the comprehension and prediction of 
financial data, it was discovered that they suffer from 
severe limitations in modeling a rich family of complex 
patterns and relationships that are nonlinear across the 
general behavior of financial markets. Traditional 
accounting, operating and forecasting are to some extent 
fairly logical, but they frequently are not able to 
represent changeable dynamics of these environments 
and non-linear financial structures with dynamic costs 
and market states [7]. For instance, [2] argues that 
ARIMA is too simple to be useful, as it fails to capture 
the complex patterns and non-linear causal structures 
required for effectively predicting trends in a dynamic 
stock market environment [2]. 

Say the problem of financial forecasting is directly 
related to the Efficient Market Hypothesis (EMH), 
which, when formulated strongly, means that all public 
information is reflected in asset prices [6]. Therefore, it 
is impossible to obtain excess risk-adjusted returns by 
using forecasts. However, note that return predictability 
is not ruled out by no-arbitrage if it represents inter-
period variation in the risk premia or in the pricing 
kernel [5]. Despite being a logically derived 
consequence of the EMH, the question of forecasting in 
financial markets has itself constituted a long-standing 
and productive research path for well over 50 years. 
Meanwhile, "the continuing concern about marginal 
gains in predictability reflects the intense belief deeply 
held by both academics and practitioners in this research 
field that predictive signals should be available. If they 
find such microstructures, it may be patterns of 
irrationality, or passing inefficiencies that fail not only 
of the weak form (which allows for markets not perfectly 
efficient but relatively close to it), or cases where even a 
slight improvement in forecast accuracy can give you 
large economic/strategic rents. Indeed, even small 
amounts of predictability are systematically associated 
with substantial economic gains for the concerned 
investors (though transaction costs and market impact 
are virtually never accounted for in this type of analysis; 
see [5]. However, it remains, and new state-of-the-art 
research continues to emerge. 

To provide an example, the joint application of 
wavelet analysis and machine learning methods remains 
a testament to this tenacity in deciphering the complex 
code of financial markets [2]. However, data mining per 
se is an issue as well; overfitting of the relations among 
variables leads to serendipitous findings of spurious, 
hard-to-fix, predictable patterns in many tested models 
[5]. It was also noted that while some median AI models 

worked, it is not yet reasonable to claim that, with 
current artificial intelligence technology, we have an AI 
model that beats the stock market. It may yet have some 
list of assets, but certainly not all [7]. It must, however, 
be down to a certain number. Forgery, which is 
interesting in that it attacks a plurality of features that 
never made its genuine work the body. 

1.2. Wavelet Analysis: A Primer for Financial Data 

While searching for better techniques to examine 
complex financial time series across various areas of 
finance and economics, wavelet analysis has proven to 
be a formidable signal analysis methodology. Most 
conventional time series analysis techniques assume 
stationarity, which is rarely encountered in economic 
and financial time series, which are typically non-
stationary, nonlinear, subject to structural changes, and 
exhibit volatility clusters [8]. Wavelet analysis has the 
benefit over conventional techniques of not assuming 
time-series stationarity and of extracting information 
that is not discernible with standard techniques [8,9]. 
While all conventional techniques analyze data in either 
the time or frequency domains, wavelet analysis offers 
the distinct advantage of simultaneously analyzing time 
series in both domains [10]. Such a combined time-
frequency representation (TFR) is important because the 
spectral content of non-stationary series, such as 
financial series, changes over time, making standard 
Fourier theory unsuitable [11]. Wavelet transforms 
(WT) were found to be superior to Fourier transforms 
for analyzing non-stationary data, making them a 
potential tool for time-series decomposition [12]. Such 
capability is realized chiefly through multi-resolution 
analysis (MRA), which is fundamental to wavelets' 
ability to decompose a signal into several frequency 
bands at different scales, that is, resolutions. MRA is 
responsible for decomposing time-series data into low-
frequency (approximation) and higher-frequency 
(detail) sub-series in the wavelet realm [12], making it 
possible to hierarchically investigate data from the large 
picture to the finer details and, by doing so, isolating 
tendencies that may be hidden within the total signal. 
Such a capability is particularly appropriate for financial 
data, whose salient events and latent structures tend to 
manifest at different time horizons, ranging from short-
term fluctuations to long-term trends [13]. Wavelet 
transforms can decompose complex financial signals 
into simpler components, thereby enabling the detection 
of hidden structures, trends, and periodicities that are 
often obscured by natural noise in financial data [13]. 
Indeed, wavelet analysis can conduct a multi-scale, 
detailed examination of signals, effectively filtering out 
noise while retaining the features of the original signals 
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[14]. The main advantage of wavelet decomposition is 
that it is possible to extract the trend from the data and 
to filter out spurious short-term fluctuation [12]. 
Wavelet analysis was initially employed to address the 
problem of detecting abrupt signal changes across 
diverse branches of the natural sciences, for example, in 
the theory of seismic waves [15], and is therefore 
particularly suitable for financial time series that often 
undergo abrupt changes and structural breaks [16]. An 
idea of wavelets, transplanted from signal processing, 
offers interesting application prospects for periodicity-
based time series, as well as for short- and long-term 
cycles [17]. 

1.3. Machine Learning in Financial Forecasting 

Over the last two decades, there has been a clear shift 

in the paradigm of financial forecasting, driven mainly 

by the development of machine learning (ML) and, more 

recently, deep learning (DL) methods [2]. The fusion of 

ML and AI has ushered in a new revolution in finance, 

enabling more accurate predictive analytics of asset 

prices and market trends beyond the reach of statistical 

models [18]. ML can be used for dimensionality 

reduction or as a dimensionality filler, especially when 

we need to use multiple combinations of N dimensions 

and forecast into the future [7]. These data-driven 

approaches have been shown to learn excellent nonlinear 

relationships purely from large historical datasets (a 

challenge for traditional statistical models). 

Different ML models, for instance, Artificial Neural 
Networks (ANNs), Support Vector Machines (SVMs), 
decision trees [7], random forests [18], Recurrent Neural 
Networks (RNNs), Long Short-Term Memory (LSTM) 
networks and various deep learning architecture like 
CNNs and hybrid models [19] have shown much 
promise for application to financial forecasting 
problems [2]. RNNs, for instance, have excelled at 
handling sequential data, although they can be prone to 
gradient explosion or vanishing when dealing with large 
datasets, which can cause them to forget the preceding 
data and hence produce incorrect estimates [1]. LSTMs 
are the upgraded version of RNNs, with gates that 
address these issues [12]. Similarly, [17] describes the 
rediscovery and widespread adoption of NN-based AI in 
the 2010s, driven by the availability of data and 
computational capabilities, and demonstrates their 
suitability for financial time series. These models can 
accommodate complex dependencies and adapt to 
shifting market forces. However, their use can be 
severely hindered by the coarse nature of financial data. 
High noise levels, non-stationarity, and the presence of 
outliers can lead to suboptimal model learning, poor 

generalizability to test data, and, ultimately, 
questionable estimates [2]. Various macroeconomic and 
microeconomic variables influence financial markets, 
and the actual impact of these variables on the financial 
system is rarely known; thus, financial data is inherently 
messy and unpredictable [14]. As noted by [2], 
prediction results in extensive data analysis, particularly 
in finance, could broadly vary based on data 
preprocessing methods employed [2]. Similar to [11, 12] 
maintains that preprocessing is a crucial step before data 
modeling, as it can improve performance and increase 
prediction precision. It highlights the pivotal role of 
robust data preparation methodologies, such as wavelet 
analysis, as cited in the current survey [8], in realizing 
the full potential of ML models. Nevertheless, problems 
related to data quality, model interpretability, and ethical 
issues persist [9]. 

2. WAVELET-BASED PREPROCESSING 
TECHNIQUES 

2.1. Core Concepts of Wavelet Transforms 

Wavelet transform is a mathematical tool to 
decompose the time series into different events at 
different frequency ranges and study the data in several 
scales or resolutions [20]. Their tool for this purpose is 
the MRA, which leads to the theory of wavelets [10]. 

In MRA, a signal is represented as a sum of 
approximation coefficients corresponding to low-
frequency coarse features (e.g., long-term trends) and 
detail coefficients representing high-frequency fine 
details (e.g., short-term noise or variability). By studying 
the data at each of its hierarchies of scales, the method 
deconstructs to a point where scientists can take in, say, 
the financial data covering millions of years (here, all 
trading days), down to something even less than an hour 
and sift out patterns that may be lost in the overall 
frenzy. [10] observe MRA reconstructing multi-scales 
both in the absence of measurement noise. An important 
advantage of wavelets, as with most local 
transformations, is that they are efficient in the time-
frequency plane, unlike the Fourier transform. Although 
the Fourier transform tells us which frequencies are in a 
signal, it discards information about when they occur. It 
is desirable to draw the readers' attention to the fact that, 
because wavelets are local in both time and frequency, 
they can directly indicate when frequencies occur and 
which frequencies are present [10]. 

This is particularly useful for the investigation of 
non-stationary financial time series, where statistical 
properties biased toward some frequency can evolve 
considerably over time. If we want to arrive at a 
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mathematical wavelet, it is the expansion of a signal in 
terms of various (scaled and shifted) versions of the 
exact basic wavelets (mother wavelet). The scaling is 
like letting a lot of different frequency bands through on 
the analysis, and the translation is so we can localize 
where in time we allow that sort of filter. Although I 
cannot present a complete mathematical treatment here, 
the simple idea of the mother wavelets, translation, and 
scaling should be enough to understand how they are 
used. 

The multiresolution decomposition of a signal X(n) 
using a three-level DWT is shown in Fig. (1). At Level 
1, the input signal is effectively passed through both a 
low-pass and a high-pass filter simultaneously. The low-
pass filter retains the low-frequency contents 
(approximations cA₁), and the high-pass filter extracts 
the high-frequency components (details cD₁). The two 
resulting outputs are also downsampled by a factor of 2. 
This decomposition process is recursive; the 
approximation cA₁ coefficients are then filtered again 
through a similar filter bank at Level 2 to produce a new 
level of approximation (cA₂) and detail (cD₂) 
coefficients. This process is repeated up to Level 3, 
where the final approximation (cA₃) and detail (cD₃) 
coefficients are obtained, representing that X(n) consists 
of different frequency components. 

2.2. Common Wavelet Families 

Selection of an appropriate mother wavelet is based 
upon a few prominent qualities, which affect its 
independent operation. Due to orthogonality, the energy 
of a signal is preserved under the transform and, hence, 
is also fast to reconstruct. Vanishing moment number is 

also valid; the wavelets that contain N vanishing 
moments are not affected by trends of polynomials of 
order N−1 and are therefore well adapted to signal 
compaction, like local features extraction. For example, 
the Daubechies 'dbN' series contains N vanishing 
moments. Finally, additional qualities such as support 
(how local in time the wavelet analysis is) and symmetry 
(which may be used to avoid phase distortion during 
analysis) are also of interest. For example, Haar wavelets 
are non-continuous and therefore optimal for detecting 
sharp jumps. In contrast, smoother variants such as 
Daubechies or Symlet wavelets are preferred for trend 
analysis of less erratic data. 

The choice of the mother wavelet is a critical aspect 
of wavelet analysis, as its shape and inherent properties 
determine how a signal is broken down and which 
features are highlighted. It is said that different wavelet 
families analyze different characteristics of the financial 
data better [21, 22] and finding an "optimal" wavelet for 
any given dataset is an important issue to be performed 
to get accurate results in modeling and forecasting [23, 
24]. Wavelet transforms are conventionally used to 
decompose financial time series into components that 
can be analyzed or forecasted separately [25-27], often 
improving performance against models with raw data. 
They are a powerful tool for analyzing nonlinear 
dynamics, especially in the high-frequency domains of 
financial data such as cryptocurrencies [28], and for 
capturing cyclical characteristics at different time scales 
[29]. Wavelet denoising is another important application 
that aims to separate signals from noise before further 
processing or prediction [30, 31]. 

 

Fig. (1). Diagram of multiresolution analysis of signals (Budu, 2014).
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• Haar: The Haar wavelet is the simplest and oldest 
type. It works by representing signals as step-like 
functions, making it effective for detecting abrupt 
changes or discontinuities in signals [13] and for 
compactly representing signals and images [32]. It 
is computationally efficient, but its abrupt nature 
may not be ideal for smooth financial data (LR-
gemini.docx text), and it may produce noisier series 
than smoother wavelets when studying stationarity 
[33, 34]. It is also known as the B-spline wavelet of 
order 1 (BS1) [35]. It has been used in the Wavelet 
Deep Average (WDA) model for cryptocurrency 
prediction [36] and in conjunction with db8 for 
DWT denoising [16]. [37] Conducted a 
comparative study including Haar wavelets for 
agricultural price forecasting. The SWIFT model 
also utilizes the Haar wavelet due to its 
computational efficiency and stable transformations 
[38]. Haar wavelets are also employed with ARIMA 
models for forecasting financial time series [36, 37], 
for modeling the banking sector [37], and for 
decomposing yield spreads in wavelet neural 
network models [22]. They have been used as a 
wavelet-based OLS estimator to investigate long-
term memory in stock prices [39] and are mentioned 
in the context of jump detection in high-frequency 
data analysis using MODWT [40]. Comparative 
analyses show that Haar can effectively capture the 
characteristics of financial data [41]. Furthermore, 
Haar wavelets are used to approximate the 
distribution of credit portfolio losses [42]. In some 
numerical studies on financial data, Haar has been 
found to perform well in solving autocorrelation 
problems and denoising data [43]. It is also used for 
noise reduction in trading systems [44] and is a 
fundamental DWT family for analyzing high-
frequency data [45]. 

• Daubechies (dbN): This family provides a good 
balance of properties for general signal analysis, 
including financial time series. These wavelets are 
orthogonal, compactly supported, and their 
smoothness increases with the order 'N', making 
them effective for capturing trends and specific 
events within data [40]. The 'N' in dbN refers to the 
number of vanishing moments [13, 46]. Specifically 
consider Daubechies wavelets as input features for 
forecasting models. They are commonly used for 
decomposing financial data, [37, 41, 47] and for 
analyzing financial time series more generally [40]. 
Specific Daubechies wavelets (such as d4, db5, and 
La8) have been used in ARIMA-Wavelet models 
for credit loss forecasting [48] and in wavelet neural 

networks for yield spread forecasting, with Db4 
showing high performance [22]. Daubechies 
wavelet analysis has been found to provide an 
accurate determination of long-term memory 
effects in stock prices [42]. Various orders have 
been tested for optimality in financial cascade 
models [23] and for real-time denoising in stock 
index prediction [39]. D4 is also mentioned for 
jump detection in high-frequency data [43]. They 
are also a common choice for analyzing high-
frequency financial data [47]. 

• Symlets (symN): Symlets are similar to Daubechies 
wavelets but are designed to be more symmetric, 
which can be better for feature analysis when phase 
distortion is a concern [13]. They have been 
considered for data decomposition [49], financial 
time-series stationarity [29, 30, 41], and real-time 
denoising in stock index prediction [39]. Symlet 7 
was identified as potentially optimal for analyzing 
stock market volatility [23], and Symlet 16 has been 
used to detect business cycles in GDP data [50]. 
They are also listed as a DWT family for high-
frequency data analysis [47]. Symlets3 specifically 
has been used to decompose stock market returns 
for cointegration analysis [32, 51]. 

• Coiflets (coifN): Coiflets are nearly symmetric and 
orthogonal, with vanishing moments for both the 
wavelet and scaling function, proper for data 
compression and smooth feature representation [28, 
52, 53]. The WT-ATT-LSTM model employs Coif3 
for denoising [6]. Coiflet wavelet decomposition 
has been shown to improve ARIMA forecasting for 
electricity demand [49]. They are also used to study 
stationarity [41], in ARIMA-Wavelet models for 
LGD [50], tested for optimality [23], numerically 
investigated for financial time series [45], used for 
decomposing yield spreads [22], and for real-time 
denoising in stock index prediction [39]. They are 
also a common choice for analyzing high-frequency 
financial data [47]. 

• Morlet: This wavelet is well-suited for analyzing 
wavelike patterns and identifying specific 
frequency content that changes over time. It is 
commonly used in CWT for studying time-varying 
correlations [54, 55], analyzing cryptocurrency 
price dynamics [38], data mining of financial time 
series for cyclical components [56], and in wavelet 
coherence analysis for studying financial market 
contagion [57]. It can also transform stock price 
data into 2D scalogram images for anomaly 
detection [58] and form kernels for SVMs [59]. 
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• Meyer: The Meyer wavelet is infinitely smooth and 
orthogonal. Its infinite support can sometimes be a 
limitation. A discrete approximation (dmey) has 
been used to study financial time series stationarity 
[34, 41], numerically investigated for financial data 
analysis [60, 61], used to decompose yield spreads 
[22], and listed as a DWT family [47]. 

• Biorthogonal (biorNr.Nd) & Reverse 
Biorthogonal (rbio): Biorthogonal wavelets offer 
flexibility with symmetric, linear-phase properties, 
excellent for perfect signal reconstruction [60]. 
They are used in various forecasting studies [49], 
numerically studied for financial data [45], and for 
real-time denoising in stock index prediction [39]. 
Specific types, such as Cdf9/7 [62, 63] and Bior 
(4.4) [59], are used in SVM kernels. Battle-Lemarié 
wavelets (spline-based, can be biorthogonal) were 
found optimal for log-price stock data [23] and are 
listed as a DWT family [47]. 

• B-Spline (BSd) Wavelets: These provide local 
DWTs; Haar is BS1 [42]. Higher-order B-splines 
are smoother, decomposing time series into less 
erratic components, which is beneficial for ANNs 
[42]. Battle-Lemarié wavelets are also spline-based 
[23, 47]. 

• CDF Wavelet: Mentioned as a DWT family suitable 
for high-frequency data analysis [47]. (Often 
Cohen-Daubechies-Feauveau, a type of 
biorthogonal wavelet). 

• Shannon Wavelet: Listed as a DWT family that can 
be used for high-frequency data analysis [47]. 

• Gaussian Wavelet Kernel: Refers to using a 
Gaussian function derivative to create a kernel for 
SVMs in financial forecasting [59]. 

• General Wavelet Applications in Finance: 
Wavelets are widely used to decompose non-
stationary financial signals into features capturing 
multi-scale dynamics [31, 47, 51, 58]. Denoising is 
a key application, especially for high-frequency 
data [39, 43]. Wavelet correlation and coherence are 
used to study market comovement and contagion 
[55, 57, 64]. Hybrid models combining wavelets 
with ARIMA or ANNs often improve forecast 
accuracy [22, 36, 37]. 

To aid researchers and practitioners in selecting 
appropriate wavelet families, Table 1 summarizes 
standard wavelets, their key characteristics, and their 
suitability for specific financial data properties, along 
with example studies. This consolidated view is valuable 
because the choice of mother wavelet is crucial yet often 

non-obvious. The table aims to link the mathematical 
properties of wavelets to the practical characteristics of 
financial data (e.g., Haar for sharp jumps, smoother 
wavelets like Daubechies or Symlets for trends). It 
illustrates these links with examples from the surveyed 
literature. This can foster more informed methodological 
decisions by providing practical guidance and reducing 
the effort required to assess the applicability of each 
wavelet family individually. 

2.3. Wavelet Applications in Preprocessing Financial 
Time Series 

Wavelet analysis offers several powerful methods 
for preprocessing financial time series data before 
feeding it into machine learning models. These 
preprocessing steps aim to improve data quality, extract 
relevant information, and enhance the overall predictive 
performance of the models. 

2.3.1. Denoising Financial Time Series 

Financial time series are inherently noisy, with 

underlying signals often blurred by random noise, 

changes in market sentiment, and high-frequency 

trading. Wavelet transforms are ideal for separating the 

underlying signal from noise [26, 27, 68, 69]. The 

procedure usually entails decomposing the signal at 

various frequency levels, thresholding the detail 

coefficients (which mainly comprise noise at higher 

frequencies) to set them to zero, and reconstructing the 

signal from the modified coefficients [13, 70]. 

Several thresholding techniques are available. Two 
of the most popular are hard thresholding, in which the 
coefficients of details below the threshold in absolute 
value are set to zero, and soft thresholding, which also 
sets coefficients of little value to zero and, in addition, 
shrinks non-zero coefficients toward zero. More 
adaptive techniques include the universal threshold 
(VisuShrink) and Stein's Unbiased Risk Estimate 
(SUREshrink) [56]. The paper by [47], which employed 
SWT for decomposition-based denoising, includes a 
denoising/feature augmentation step, and [45] uses 
wavelets explicitly to denoise for predicting Bitcoin 
prices. 

These effects on the time series can be dramatic, and 
wavelet denoising has been shown to yield smoother 
results with clearer underlying trends, making the 
denoised time series ideal input data for ML models. The 
former naturally leads to better prediction accuracy [56]. 
For instance, [16] showed that denoised stock data had 
stable trend features and smoothness, which 
significantly helped their ELM-based prediction model. 
The consistent success, as seen in numerous studies 
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including wavelet denoising as a first stage, suggests that 
correcting the huge signal-to-noise ratio of financial data 
is an essential step for successful ML-based forecasting. 
To the best of our knowledge, the popularity of wavelet 
denoising and its promising results indicate that it is not 
merely a supplementary preprocessing approach, but 
also strongly recommended and/or even inevitable to 
improve learning performance in noisy financial 
domains. It underscores the aphorism that the quality of 
data required to feed an ML model is paramount, and 
wavelet denoising becomes a crucial approach to ensure 
higher input quality, enabling models to learn 
meaningful, actual underlying patterns rather than 
occasional ripples [56, 71]. 

2.3.2. Feature Extraction and Engineering Using 
Wavelets 

Aside from denoising, wavelet transforms are a 
powerful tool for feature engineering in financial 
machine learning. One of the closest applications 
considered in the early work of [13] relies on wavelet 
coefficients as input features. [52] Provide a recent 

example of this principle. This simple yet successful 
strategy, along the lines discussed in Section 2, involves 
using Daubechies wavelet coefficients as predictors in 
their forecasting procedures. However, the above 
approach is simple, and in recent years, a more 
sophisticated multiwork item has been used, recognizing 
that the complete set of coefficients may be high-
dimensional and noisy. 

This led to calculating a denser collection of statistics 
on the wave`let sub-bands than on mean, variance, 
energy, or entropy. It is also notable that complexity-
based quantities, like wavelet entropy, have been tested 
and implemented [72]. [73], among others, 
demonstrated significant performance gains when using 
wavelet entropy in deep learning models to forecast 
stock indices and forex volatility. However, this strategy 
of having a large pool of features also introduces a new 
problem: feature selection. The DWT-CSO approach 
[72] uses a bio-inspired CSO (Chicken Swarm 
Optimization) algorithm to select the optimal subset of 
wavelet features, thereby avoiding overfitting. 

Table 1. Summary of wavelet families and their characteristics for financial data. 

Wavelet Family Key Characteristics Suitability for Financial Data 

Properties 

Example Studies 

Haar Discontinuous, Orthogonal, 

Compact Support 

Detecting abrupt changes, price 

jumps, structural breaks; 

Computationally very efficient. 

WDA for crypto [43], SWIFT 

model [41], Part of DWT 

denoising with db8 [16], 

Agricultural prices [44] 

Daubechies (dbN) Orthogonal, Asymmetric, Compact 

Support, N vanishing moments 

Good general-purpose; Smoothness 

increases with N; Capturing trends 

and localized events. 

Feature input [48], Agricultural 

prices [44] 

Symlets (symN) Near Symmetric, Orthogonal, 

Compact Support 

Similar to Daubechies but with less 

phase distortion; Good for feature 

analysis. 

General time-series analysis [13] 

Coiflets (coifN) Near Symmetric, Orthogonal, 

Vanishing moments for ϕ & ψ 

Good for compression and signal 

reconstruction; Smooth feature 

representation. 

WT-ATT-LSTM for NIFTY 50 

denoising (Coif3) [56]. 

Morlet Non-orthogonal, Complex-valued, 

Gaussian-shaped 

Analyzing oscillatory patterns, 

frequency content, and time-varying 

correlations (e.g., in wavelet 

coherence). 

Wavelet coherence analysis [65] 

Biorthogonal Symmetric, Linear Phase (allows 

perfect reconstruction) 

Signal reconstruction, applications 

where phase is important. 

Bior (4.4) wavelet kernel SVM 

(older study) [66, 67] 
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As observed, it is this transformation to a space in 
which the one-dimensional time series is rescaled with 
respect to different scales and locations of (known) 
features that gives wavelet-based methods their 
predictive advantage. It allows models to quantify —and 
potentially even harvest —an entire class of phenomena 
that are virtually invisible in raw price data: complex 
operational regimes of volatility that come and go, faint 
cyclical behaviors that only reveal themselves over 
particular timescales, changes in market complexity, and 
on and on [74, 75]. 

This approach provides machine learning models 
with a richer, multi-horizon portrait of market dynamics, 
allowing them to see finer-grained, scale-dependent 
patterns governing financial returns across many 
scenarios. 

3. HYBRID FORECASTING MODELS 

Wavelet transforms are better predictors, in terms of 
relative RMS prediction errors, when used both as a 
preprocessing step and as the primary processing step 
within a hybrid model [76]. The literature indeed claims 
that there is a strong consensus that, for any ML 
algorithm, using its wavelet decomposition as a feature 
space yields better generalization than applying one of 
these techniques alone. All the arguments around 
synergy apply to this combination. 

Wavelets are noise-diggers, and there is nothing else 
they do or multiply with directly to the features (unless 
more complex representations other than just removing 
noise where latent patterns can hide are made, i.e., 
denoising raw time series, coding a richer, multi-scale 
set of values, etc.). This provides a much cleaner, more 
organized view of market dynamics for the ML model to 
learn from, resulting in much higher efficiency and 
accuracy [77]. Therefore, this part will investigate the 
most impactful ML architectures used as engines for 
these strong hybrid frameworks. 

3.1. Wavelet-Neural Network Hybrids 

Given that financial markets are complex and highly 
non-linear, Neural Networks (NNs) have become central 
to predictive modeling. Their great strength lies in their 
generalization power: they are universal function 
approximators that can learn complex dependencies that 
classic linear methods cannot model. It is particularly 
compelling in conjunction (synergetically) with wavelet 
preprocessing [78]. 

Wavelets handle the complexity of the preprocessed 
data. They separate a noisy, time-varying signal into 
primitives and more stable elements. This enables the 

NN to master valuable regularities in the field and thus 
achieve more than reported in the literature [79, 80]. 
This is in line with the trend toward the application of 
hybrid financial models and aligns with earlier research, 
such as contrasting different network configurations [81, 
82] or NNs coupled with statistical forecasting models, 
such as ARIMA, to boost forecasting performance [83]. 

• Multi-Layer Perceptrons (MLPs): An example of 
a feedforward network is the Multi-Layer 
Perceptron (MLP). Those values as Universal 
Function Approximators attest to its inherent 
richness, not only as an autonomous approach but 
also as a torchbearer of more evolved practices. For 
instance, WaveletMixer [84] adopts an MLP as a 
learning model to process bit-expensive time-series 
data. This encapsulates an important role for MLPs 
in modern finance: once we are done with the 
feature space from a temporal perspective, we are 
left with a non-trivial, dynamic, and non-linear 
structure that needs to be modeled. This flexibility 
can therefore be seen in the different types of 
applications in which it has been applied over time: 
from fundamental work in forecasting stock and 
exchange rates [85, 64] to more recent research on 
cryptocurrency price dynamics [86]. 

• Recurrent Neural Networks (RNNs): To address 
this and the time series component of financial data, 
one of the most revolutionary developments was 
that of Recurrent Neural Networks (RNN). RNNs 
differ from feedforward neural networks because 
they have a feedback structure, allowing the 
memory of the neuron's internal state to be 
maintained. In theory, such a design can learn from 
sequential data effectively. However, this intuition 
is ruined by a severe and well-known problem: the 
vanishing gradient and exploding gradient. This 
makes classical RNNs so hard to learn long-range 
dependencies, which are crucial in financial 
markets. While some researchers remained unhappy 
and proposed enhancements, the net effect is that 
essentially nobody today uses these base RNNs for 
"main" forecasting. However, they provide a 
valuable basis for comparing more sophisticated 
algorithms (such as LSTMs or wavelet-hybrid 
methods) [87, 88]. 

• Long Short-Term Memory (LSTM) Networks: 
LSTM is ultimately the solution to the vanishing 
gradient problem in vanilla RNNs. Its power stems 
from a clever gating mechanism which a set of 
input, forget, and output gates that carefully manage 
which information is allowed to flow through the 
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network's memory cells. It is this architecture that 
endows LSTM with the ability to memorize useful 
information for a period of time, not only short ones, 
but even very long ones (and, in an ideal world, 
flush out useless noise in the data), a property that 
has made LSTM the workhorse model for forecasts 
of financial time series [89]. Accordingly, the 
literature is abundant with successful wavelet-
LSTM hybrids, particularly due to their success 
across multiple disciplines, ranging from [90, 91], 
indices and trend prediction markets to commodity 
price computation [44]. They perform favorably in 
many comparative studies [92] and are a reliable, 
robust device for capturing the non-linear 
characteristics of markets. 

• Gated Recurrent Units (GRUs): Inspired by the 
success of LSTMs, the Gated Recurrent Unit (GRU) 
emerged as a promising alternative, primarily for 
greater computational efficiency. It does so via a 
simplified architecture that merges the LSTM's 
input and forget gates into a single "update gate," 
thereby reducing the total parameter count. The 
surprising fact, as noted by [56, 93], is that GRUs 
generally perform quite similarly to LSTMs in 
terms of quality of results while requiring much less 
training time, an essential characteristic in practice 
[94]. This optimal mix of power and efficiency has 
positioned it as a preferred choice for recent wavelet 
hybrids. Recently, research demonstrated the 
superiority of SWT with optimized GRUs for Stock 
Prediction [6] and Bidirectional GRUs for volatility 
in assets like Bitcoin [86]. 

• Convolutional Neural Networks (CNNs): As 
opposed to the line-by-line manner in which RNNs 
solve the prediction problem, Convolutional Neural 
Networks (CNNs) adopt an entirely distinct strategy 
for modeling and predicting time series data, 
namely pattern recognition [95, 96]. Initially 
developed for image recognition, they work by 
using convolutional filters that serve as learnable 
detectors of specific shapes or patterns in the data. 
The underlying premise is that a time series of asset 
prices or other financial instruments can be 
considered as a 1D "image," in which pattern 
repetition (similar to classical chart patterns) could 
have some forecasting property. Architectures such 
as SincNet are specifically designed to solve the 
task of signal classification [97]. This new paradigm 
has even led to the creation of image-like 
representations of financial data —for example, 
heatmaps of a limit order book —enabling the use 
of standard 2D CNNs for price prediction [98]. 

They also serve as strong feature extractors within 
more general hybrid systems, such as the CNN-
SVM model introduced in [78]. 

• Graph Neural Networks (GNNs): One important 
direction to this end is that one should look beyond 
individual time series and model the whole market 
as a system with its feedback on itself and this is 
where Graph Neural Networks (GNNs) step in. 
Where they excel is in modeling intricate cross-
asset dependencies such as supply chain 
relationships among firms, sentiment propagation 
within an industry, and competitive effects. For 
instance, the Multi-Modality Graph Neural 
Network (MAGNN) introduced by [94], is an 
excellent demonstration of the power in this. From 
that graph, along with others constructed from 
various data sources including historical prices, 
news sentiment, and industry knowledge graphs, the 
model can learn how information travels through 
the market network to predict more effectively but 
in a more nuanced manner. 

• Probabilistic Neural Networks (PNNs): While 
many networks predict a specific future value 
(regression), predicting up or down is often more 
useful (classification). To achieve this, the 
Probabilistic Neural Networks (PNNs) have been a 
non-orthodox alternative. In the Bayesian 
framework, PNNs are trained to classify inputs into 
N discrete classes by producing probability density 
functions for each class. Pioneer work of [76] 
proved their capability by providing a strong 
prediction of the direction of three stock indices. 
This change of viewpoint is important because the 
direction you choose to align in is often the 
overwhelming determinant of performance for most 
trading systems. 

• Quantile Regression Neural Networks (QRNNs): 
QRNNs, a type of feedforward neural network, can 
estimate nonlinear models at different quantiles. 
PSOQRNN, a particle swarm-optimized QRNN, 
has been proposed for forecasting financial time-
series volatility [77]. 

• Deep Q-Networks (DQN): DQNs, which combine 
deep neural networks with Q-learning (a 
reinforcement learning algorithm), have been 
applied to financial applications, such as optimizing 
money management policies [87]. 

• Other Architectures: Dynamic Artificial Neural 
Networks (DANs) and General Regression Neural 
Networks (GRNNs) are also mentioned for stock 
market prediction and volatility forecasting 
respectively [77, 85]. Radial Basis Function (RBF) 
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networks are another type used in exchange rate 
forecasting [64]. 

3.2. Wavelet-Transformer Hybrids 

The gated RNN was indeed a significant 

advancement. However, the more recent use of the 

Transformer architecture, which originates from Natural 

Language Processing, represents a true breakthrough for 

time series forecasting [88]. Their pivotal advancement 

is the self-attention mechanism. Unlike recurrent neural 

networks (RNN) which process input sequentially, 

attention-based models can consider all previous data 

points at once. This ability is especially beneficial for 

modeling long-term, non-linear relationships typically 

found in financial data.  Building on this, several time-

series analysis Transformer-based models, such as 

Informer, Autoformer, and PatchTST, have been 

developed [52]. 

Wavelet analysis and Transformers is a unique and 
emerging area of study, as the attention mechanism 
allows for modeling complex financial signals at a 
higher level after wavelets decompose the signal into 
simpler components. This concept is simple, yet offers a 
powerful combination of signal decomposition and 
attention modeling. Researchers have attempted a 
variety of integration methods. Some models, for 
example, directly input wavelet-based multi-resolution 
features into the Transformer, which generates rich 
multi-resolution features [52]. Others, such as the 
SWIFT model, apply wavelets for down-sampling to 
reduce computational cost while preserving important 
signal attributes [45]. 

Nonetheless, progress has achieved several hurdles. 
The intricacy of dual structures increases the tendency 
toward overfitting, particularly due to noise in the 
financial environment. Also, their "black box" nature 
raises concerns about interpretability and transparency. 
This places a central paradox to the domain: the pursuit 
of top predictive precision against the practical need for 
reliable models that enable straightforward, sound 
explanations in high-risk financial scenarios. 

4. PERFORMANCE EVALUATION AND 
APPLICATIONS 

4.1. Common Performance Metrics 

The evaluation of financial forecasting models, 
particularly those integrating wavelet analysis and 
machine learning, relies on a set of standard 
performance metrics. These metrics provide quantitative 
measures of a model's accuracy, error magnitude, and 

classification ability. Understanding these metrics is 
crucial for comparing the efficacy of different hybrid 
approaches. 

Commonly reported metrics in the reviewed 
literature include: 

• Error Metrics (for regression tasks like price 

prediction): 

o Root Mean Squared Error (RMSE): Measures the 

square root of the average of squared differences 

between predicted and actual values. It penalizes 

larger errors more heavily. Lower RMSE indicates 

better fit [2]. 

o Mean Absolute Error (MAE): Calculates the 

average of the absolute differences between 

predicted and actual values. It gives a direct 

measure of the average error magnitude. Lower 

MAE is preferable [2]. The error rate calculation 

𝑒 = (∑ |𝑟𝑖 − 𝑝𝑖|𝑛
𝑖=1 ) ÷ 𝑛 used in the TRNN study is 

equivalent to MAE. 

o Mean Absolute Percentage Error (MAPE): 

Expresses the average absolute error as a percentage 

of the actual values. It helps compare forecast 

accuracy across time series with different scales. 

Lower MAPE indicates higher accuracy [44]. 

• Accuracy Metrics (for classification tasks like 

predicting price direction - up/down): 

o Accuracy: The proportion of correct predictions 

(both true positives and true negatives) among the 

total number of cases. Higher accuracy is better 

[56]. 

o F1-Score: The harmonic mean of precision and 

recall. It is a valuable measure when dealing with 

imbalanced classes. A higher F1-Score indicates 

better classification performance [56]. 

o Area Under the ROC Curve (AUC): The AUC 

represents the model's ability to distinguish between 

positive and negative classes. An AUC of 1 

indicates a perfect classifier, while 0.5 suggests a 

random classifier. Higher AUC is better [56]. 

• Goodness-of-Fit Metrics: 

o R-squared (R2): Represents the proportion of the 

variance in the dependent variable that is 

predictable from the independent variable(s). A 

higher R2 (closer to 1) indicates a better fit of the 

model to the data [56]. 
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o Directional Accuracy / Hit Ratio: Specifically 
measures the percentage of times the model 
correctly predicts the direction of price movement 
(e.g., up or down), which is often more critical for 
trading decisions than the exact price forecast [70]. 

4.2. Benchmarking and Comparative Analysis 

A central theme emerging from the reviewed 
literature is the enhanced efficacy of hybrid wavelet-ML 
models compared to their standalone counterparts or 
traditional statistical methods Table 2. 

• Versus Standalone ML Models: Studies 
consistently demonstrate that integrating wavelet 
analysis as a preprocessing or feature-engineering 
step significantly improves ML model performance. 
For example, [16] showed that their DWT-ELM 
(DELM) model achieved substantially higher 
accuracy and AUC values in stock trend prediction 
compared to a standard ELM model trained on raw 
data. Similarly, [44] reported that a Wavelet-LSTM 
model achieved over a 30% gain in accuracy 
(reduction in error metrics) compared to a 
standalone LSTM model for forecasting spice 
prices. The research on the WT-Att-LSTM model 
for the NIFTY 50 index also found it outperformed 
an Attention-LSTM (without wavelets) and a basic 
LSTM model, with ablation studies confirming the 
positive contribution of wavelet denoising [56, 72] 
reported accuracy increases ranging from 15.89% to 
19.59% for various stock indices when using their 
DWT-CSO feature engineering approach with 
ML/DL models compared to models without this 
wavelet-based feature processing. 

• Versus Traditional Statistical Models: Wavelet-
ML hybrid models also tend to outperform 
traditional time-series models such as ARIMA or 
GARCH. For instance, [86], whose stacked deep 
learning model incorporated wavelet denoising, 
found that their approach for Bitcoin forecasting 
outperformed ARIMA. The TRNN model, an 
optimized RNN with its own advanced time-domain 
preprocessing, was also shown to outperform 
ARIMA and GARCH models in stock price 
prediction [2]. 

The robust performance of wavelet–ML hybrid 
models over wavelet-less models supports the central 
hypothesis of this research domain, which asserts that 
resorting to wavelet transforms to address the problems 
of noise and non-stationarity in financial data is 
necessary for more precise forecasting. Wavelets 
improve signals and help construct richer, more 
informative features that ML models use to identify 

patterns and improve their generalization performance 
on novel datasets. 

It is more than simply incorporating a better 
performing ML model. It is indicative of the value added 
from sophisticated layers of data abstraction and robust 
learning paradigms. The results show that the 
effectiveness of the used technique depends on the 
assumed preprocessing paradigm, thereby substantiating 
the notion that "the more sophisticated the data, the more 
sophisticated model one is required to use," which 
comes from the domain of learning from data 

4.3. Applications Across Diverse Financial Markets 

The application of hybrid wavelet-ML models spans 
a wide range of financial markets and forecasting tasks, 
demonstrating the approach's versatility. 

• Stock Market Forecasting: 

o Prices and Indices: A considerable segment 
remains investment in propensity prediction of 
stock prices and stock market indices. This is 
represented by the WT-Att-LSTM model developed 
for the NIFTY 50 [56] and by the DWT-CSO model 
used for NIFTY50, BSE (India), S&P500, and DJI 
(US) indices [72], DWT-ELM for stock market 
trend forecasting [16, 95, 99, 100] and MRA-RNN 
for some U.S. stocks [10] and SWT-OGRU model 
for stocks of individual companies such as Apple 
and Netflix [6]. Also, wavelet-transform-based is 
the TRNN model [2], which has focused on the 
Dow Jones Index. 

o Turning Points: Knowing when a market starts to 
rise and when it starts to fall is crucial for any trader. 
Wavelet analyses of these issues often involve 
decomposing the residuals of a forecasting system's 
internal model to extract internal cyclical 
components. In a line of work now referenced in 
contemporary research, applied wavelet MRA to the 
US, UK, and China markets. More research has 
shown that DWT-based denoising can highlight the 
more stable trends, thereby assisting in the 
identification of turning points. The TRNN model 
integrates DNN-based turning point detection, as 
described by some researchers. Wavelet analysis in 
the context of stock markets is one of the most 
efficient methods for measuring instantaneous price 
changes and determining, in real time, the price 
fluctuations that activate the market. This is 
achieved by enhancing the clarity of the underlying 
trend components, which can be obscured by short-
term noise [101]. By isolating these trends, wavelets 
can make it easier for models, and even for experts 
conducting visual analysis, to detect momentum 
shifts that often signal impending market reversals. 
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Table 2. Comparative summary table. 

Reviewed Method/Model Dataset Used Key Performance Metrics 

Reported (Value) 

Notes on Computational Cost 

Discrete Wavelet Transform [41]. Dow Jones Industrial 

Average (DJIA30) 

Autocorrelation Function (ACF) 

measures the stationarity and 

"noisiness" of the data after the 

DWT is applied. 

 

BSd-RNN. [42] Monthly historical 

volatility (HV) from 

S&P 500, NASDAQ, 

DJIA, and NYSE.  

FRMSE: 0.0022  

FMAE: 0.0012  

FMAPE: 0.0231 

B-spline wavelets use matrices 

that enable linear algorithms, 

increasing the model's 

efficiency. 

Wavelet Deep average model. [43] Bitcoin (BTC), 

Dogecoin, Ethereum 

(ETH), and Bitcoin 

Cash (BCH) 

price prediction was an MAE of 

1.19. illiquidity prediction was 

an MAE of 1.49. 

The model was implemented 

using the Keras library with a 

TensorFlow backend. Specific 

network settings included a 

batch size of 64 and a learning 

rate of 0.0001. 

Wavelet LSTM model. [44] Monthly wholesale price 

data from various 

markets across India.  

Root Mean Square Error 

(RMSE), Mean Absolute 

Percentage Error (MAPE), and 

Mean Absolute Error (MAE). 

Wavelet LSTM model gain in 

accuracy of more than 30% 

compared to the standard LSTM  

significant limitation of wavelet-

based denoising is that it can be 

computationally intensive. 

SWIFT [45] Traffic, Electricity, 

Weather, and four 

subsets of the ETT 

dataset  

SWIFT achieved an MSE of 

0.0129, significantly 

outperforming models like FITS 

(0.0376) and Transformer 

(0.0384) 

The SWIFT-Linear variant has 

only 18.1k parameters, which is 

4 times fewer than a standard 

single-layer linear model and 

roughly 15% of the parameters 

of another lightweight model, 

FITS. 

This is a comparative analysis paper that 

uses the Haar Wavelet and the 

Daubechies Wavelet [40]. 

S&P GREEN BND 

SELECT INDEX - 

PRICE INDEX 

Energy Distribution: 85.51% 

Entropy Coefficients: 0.6231 

Haar wavelet as "a 

straightforward and effective 

wavelet" , Daubechies wavelet 

as "a more sophisticated wavelet 

with more smoothness and 

accuracy" 

Non-Decimated Wavelet Transform 

(NDWT) and Non-Decimated Wavelet 

Packet Transform (NWPT) [52] 

UK National Grid 

electricity 

supply,Hourly 

measurements from 

Heathrow, Simulated 

Data 

Primary evaluation metric is the 

Symmetric Mean Absolute 

Percentage Error (SMAPE), 

NDWT features led to a 31% 

reduction in SMAPE for 

Multilayer Perceptron (MLP) 

models and an 11% reduction for 

XGBoost models 

Approximately 140 hours to run 

on a computer with an Intel i9-

9920X CPU and an NVIDIA 

GeForce RTX 3080 Ti GPU. 
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Hybrid ARIMA-wavelet [53] USA monthly electricity 

demand data 

RMSE decreased by 24.6%. 

MAE decreased by 23.7%. 

MAPE decreased by 23.5%. 

Sigma XL and MATLAB 

software. 

The study evaluates several machine 

learning models: Gradient Boosting 

Machine (GBM) with Bayesian 

Optimization, LSTM, and Autoencoder 

[56] 

Historical financial and 

operational data from a 

manufacturing firm 

Cost Estimation: MAPE (4.9%) 

Financial Forecasting: sMAPE 

(7.9%) 

Training times for its best-

performing models: 7.10 seconds 

for the hybrid GBM model and 

5.78 seconds for the LSTM 

model. 

Time-series Recurrent Neural Network 

(TRNN)dependencies [2]. 

Dow Jones Index Prediction Error Rate:                                   

TRNN: 9.23%  

LSTM: 14.4%  

ARIMA: 15.54%  

RNN: 16.4%  

GARCH: 37.63% 

2.8 GHz Intel Core i7-1165 CPU 

and 32 GB of RAM. The 

programs were written in C# and 

Python 3.7, using TensorFlow 

1.13.1. 

EWT-attention-LSTM [75] Case 1: Monthly 

industrial electricity 

consumption in Hubei 

Province, China     

Case 2: Monthly total 

electricity consumption 

of China 

Case 3: Monthly 

petroleum products 

consumption of the 

United States 

MAPE values for the proposed 

EWT-attention-LSTM model: 

Case 1 (Hubei Electricity): 

4.01%. 

Case 2 (China Electricity): 

5.37%. 

Case 3 (US Petroleum): 1.60%. 

For all experiments, the models 

used data from the previous three 

months (t-3) to forecast the 

target variable for the current 

month (t). 

DELM (Denoised Extreme Learning 

Machine) [91] 

Study used a dataset of 

400 stocks from the 

Shanghai and Shenzhen 

stock markets in China. 

Accuracy (Acc): 0.7013  

AUC: 0.6892  

Precision (P): 0.6681  

F1 Score: 0.6369  

Recall (R): 0.6257 

Efficiency of the Extreme 

Learning Machine (ELM) 

component, noting its fast 

convergence and learning speed 

compared to traditional gradient-

based algorithms like 

backpropagation. 

Multi-layer Perceptron (MLP), 

Convolutional Neural Network (CNN), 

and Long Short-Term Memory (LSTM) 

[90]. 

10-year (2009–2019) 

daily adjusted stock 

price data for four major 

US companies: Coca-

Cola, Cisco Systems, 

Nike, and Goldman 

Sachs. 

Primary metric used was the 

Area Under ROC Curve (AUC) 

to account for class imbalance. 

LSTM model achieved an AUC 

of almost 0.85 on the Cisco 

Systems data.  

The paper notes a trade-off 

between performance and 

efficiency’s model produced 

superior results but is described 

as a "computationally expensive 

algorithm that requires a long 

time to train".  

WT-Att-LSTM [56]. Daily data from the 

NIFTY 50 index 

RMSE (Root Mean Squared 

Error): 0.0302  

MAE (Mean Absolute Error): 

0.0234  

R² (R-squared): 0.9777  

The paper focuses on the model's 

architecture and predictive 

accuracy. It does not provide 

specific details on the 

computational cost, training 

time, or overall efficiency of the 

WT-Att-LSTM model. 
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Multi-modality Graph Neural Network 

(MAGNN) [94] 

All 3714 public 

companies in the China 

A-shares market 

Weighted-F1: 0.4825  

Micro-F1: 0.4838  

Macro-F1: 0.4627 

The MAGNN model, written in 

TensorFlow, takes 2 hours to 

train on 2 Tesla P100 GPUs. 

Artificial Neural Networks (ANN) and 

Support Vector Machines (SVM) [96]  

Stock indices like 

NASDAQ, S&P 500, 

KOSPI, and NIFTY 

ANN: Reported accuracy varies 

significantly across models and 

datasets. Some studies achieved 

accuracies of 98% and 96.22% 

(R² scores). More commonly, 

accuracy ranges between  

68% and 90%. 

SVM: Simple SVM models 

typically show an accuracy of 

about 60%–70%. 

SVM: Is noted to "fall short 

when dealing with large 

datasets" because it can require 

high computational power and 

be time-consuming to run. 

ANN: The primary time cost is 

not in running the model but in 

finding the optimal network 

configuration, which is described 

as a "trial and error game" that 

can be "tedious and periodically 

time-consuming". 

Deep stacking ensemble model [86] Bitcoin (BTC) data 

sourced from 

bitinfocharts 

Mean Absolute Percentage Error 

(MAPE) of 0.58% 

Deep learning approaches tend 

to take longer to execute than 

traditional machine learning 

methods. 

The study compares the performance of 

a simple Recurrent Neural Network 

(RNN) and its two main variants: Long 

Short-Term Memory (LSTM) and Gated 

Recurrent Unit (GRU) [97]. 

Stock market indices 

and currency exchange 

rates 

The models were evaluated using 

Root Mean Squared Error 

(RMSE) and Mean Absolute 

Error (MAE). The GRU model 

achieved the best overall 

performance. 

The paper notes that the LSTM 

model has many parameters, 

which "requires a large 

computational power, making 

the data processing slow."  

• Commodity Market Forecasting: 

o The forecasting of commodity prices, including 
agricultural products and energy, has benefited from 
the integration of wavelet-ML. [44] demonstrated 
significant improvements in forecasting spice prices 
using a Wavelet-LSTM model. [58] proposed 
combining wavelet-based divergence measures with 
LSTMs to predict commodity prices under 
conditions of economic and financial uncertainty. 

• Cryptocurrency Market Forecasting: 

o The very volatile and noisy characteristics of 
cryptocurrency markets makes them a challenging 
but suitable environment for wavelet-ML 
applications. [86] applied Haar wavelet noise 
reduction to a stacked deep learning model 
(consisting of LSTMs, GRUs, and Transformers) for 
the prediction of Bitcoin prices and movement. [43] 
proposed WDA model to combine wavelet features 
(features selected through Random Forest) and 
simple averaging of the deep learning models to 
predict the prices and illiquidity of multiple sets of 
cryptocurrencies (BTC, Dogecoin, Ethereum, etc.). It 

is interesting to use wavelets in these markets, as 
traditional models may fail because of the extreme 
data properties. Wavelet denoising and advanced 
feature extraction are necessary to extract a 
discernible pattern from the highly stochastic nature 
of cryptocurrency price series. The findings in those 
papers show that wavelet-ML hybrids could be an 
exciting tool for navigating the maze of 
cryptocurrency forecasting, and, in the case of ripple, 
at least in stable, mature, less noisy traditional 
markets. 

• Volatility Forecasting: 

o Forecasting financial volatility is important for risk 
management and option pricing. Wavelet analysis 
has also been used by [73, 102, 103], employing 
wavelet entropy along with DL models to predict 
forex volatility. Other research describes a 
framework that integrates a Triple-Discriminator 
Generative Adversarial Network (GAN) with the 
Continuous Wavelet Transform (CWT) to 
decompose the volatility time series into signal-like 
and noise-like frequency components for 
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independent monitoring and detection [104]. Due to 
wavelet decomposition of signals into various 
frequencies, wavelets can also directly help track and 
model volatility. The volatility itself is a multiscale, 
time-dependent phenomenon: it clusters, evolves, 
and behaves differently in the short-term and the long 
run. High-frequency detail coefficients in wavelet 
decomposition can equivalently refer to short-term 
volatility, and lower-frequency approximation 
constituent may indicate medium (long) term trends 
in volatility. As a consequence, wavelets offer a 
natural and practical approach to capturing the multi-
scale nature of volatility and enable better modeling, 
potentially resulting in more accurate forecasts than 
models based solely on raw price returns. 

5. CHALLENGES AND LIMITATIONS IN 
APPLYING WAVELET ANALYSIS WITH 
MACHINE LEARNING 

Despite the promising results achieved by hybrid 
wavelet-ML models, their application in financial 
forecasting poses challenges and limitations. Addressing 
these is crucial for the continued advancement and 
practical adoption of these techniques. 

5.1. Choice of Mother Wavelet 

Determining the appropriate wavelet transform for 
financial time series analysis is a complex yet essential 
task in wavelet-based modeling [13]. Each of the mother 
wavelets, such as Haar, Daubechies, Symlets, and 
Coiflets, has its own symmetrical, mathematically 
distinctive properties of compact support and the number 
of vanishing moments. These traits impact the way a 
wavelet is able capture the features of the financial time 
series. Using the wrong wavelet can lead to insufficient 
decomposition, ineffective noise suppression, and 
insufficient feature extraction, which, in turn, negatively 
affect the subsequent machine learning model's 
performance. 

For instance, [44] explores the use of the Daubechies 
and Haar wavelets in forecasting agricultural prices, 
while [53] cross-validated to Daubechies configurations 
having different degrees of vanishing moments to 
optimize performance. These studies illustrate the 
absence of a single definitive criterion for selecting 
mother wavelets for financial datasets. Typically, 
selection is conducted on an ad hoc basis based on data 
smoothing, gaps, and the wavelet and signal processing 
literature, which often fails to capture the intricacies of 
financial time series. 

5.2. Determining Optimal Decomposition Level 

Decomposition levels in a wavelet transform are as 
important as the selection of the corresponding mother 

wavelet [44]. The decomposition level determines the 
level of detail in the multi-resolution analysis. With too 
few levels, important frequency components are more 
likely to be combined, making it harder to distinguish 
patterns from noise. With too many levels, excessive 
complexity, and the addition of spurious components, the 
wavelet transforms, especially the Wavelet Packet 
Transform (WPT), becomes problematic due to 
significantly higher computational costs.   

In a previous study [44], it was determined that a 
decomposition level of H6 yielded the best results with 
the Haar wavelet and LSTM model. Other model–spice 
combinations, however, achieved optimal performance at 
different levels, such as H5 or H7. The growing need for 
parameter tuning and model validation is underscored by 
the need to adapt to the variety of datasets. 

5.3. Selection of Thresholding Rules and Values for 
Denoising 

The success of hybrid modeling depends on the 
efficiency of done in the wavelet transform denoising 
process. Which depends on two rules. One is the 
thresholding rules (hard, soft, Garrote), and the other is 
the method for computing the threshold (universal 
methods like VisuShrink and adaptive methods like 
SUREshrink) [56]. Failure of thresholding results in dire 
consequences. An extremely conservative threshold 
keeps the data too dirty, forcing the machine learning 
model to work on it. An aggressive threshold, on the other 
hand, leads to aggressive signal information extraction, 
resulting in the complete loss of vital financial features 
due to excessive overshooting. 

A straightforward example is [16]. While many works 
used fixed threshold parameters, others claimed that, for 
the DWT-ELM model, such parameters do not perform 
well under varying data conditions. The war —the 
challenge — is in the middle… is the best answer. 
Continue the sentence from the example to support the 
answer down to signal patterns [105]. 

5.4. Risk of Overfitting 

This multitude of parameters, formed by selecting a 
wavelet's mother, its decomposition levels, and its 
subsequent thresholding, along with training an ML 
model on the altered dataset, is sure to provide a wide 
range of options for constructing the model. This ease of 
construction, however, comes at a cost: an increased risk 
of overfitting. This, along with her concern about the 
wavelet-ML model in conjunction with machine learning, 
might make the model overly tailored to the training 
dataset. In the case above, the model might learn 
underlying trends and remove a portion of the overlying 
noise, hence the name "residual noise". Thus, in the case 
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where the model performs exceedingly well on in 
sampling and specific tests, the model is just trying to 
derive relationships between seen objects and fails in the 
case of the real world, a revelation that is unheard of in 
financial forecasting, is a testament to the level of over-
fitting that has been done. 

To combat this, steps such as rigorous cross-
validation and overfitting-preventing mechanisms are 
key. This has been highlighted in the case of wavelets' 
overfitting about the optimal number of wavelets selected 
via cross-validation [52]. In the end, the goal is to 
determine whether the noise and inherited characteristics 
of the chosen sample skew the model's performance 
assessment in a way that does not reflect the actual 
complexities of the market and its underlying behavioral 
mechanisms [101]. 

5.5. Computational Cost and Practical 
Implementation 

While implementing wavelet-based models, it is 
important to strike the right balance between model 
performance and computational cost. Various 
components contribute to the overall computational 
demand, including the chosen mother wavelet, the 
number of decomposition levels, and the size of the set 
under analysis. Generally, increasing the decomposition 
level provides a more granular analysis but also increases 
computation time and memory requirements. There are 
several accessible software libraries for implementing 
these methods. In Python, the PyWavelets library is the 
standard for wavelet transforms, offering a wide range of 
wavelet families and functions for decomposition and 
denoising. For MATLAB users, the Wavelet Toolbox™ 
provides a comprehensive graphical and command-line 
environment for analyzing, synthesizing, and processing 
signals. 

CONCLUSION 

Financial forecasting is an age-old problem and one 
of the most challenging for quantitative analysis, 
primarily because financial time series data are complex, 
with pervasive noise, non-stationarity, and non-linearity. 
In many situations, these complex patterns cannot be fully 
accounted for by classical statistical models. This paper 
collates an extensive body of peer-reviewed literature to 
show that the maturation of wavelet transforms with 
machine learning is indeed an important and inevitable 
paradigm shift across the field. 

The primary conclusion is that the wavelet is not 
simply an addition to other analysis techniques; it is an 
independent, robust, and constructive approach to 
analysis that enriches the quality of financial data, 

particularly in effective feature denoising and multi-scale 
extraction. The application of the wavelet transform 
enables a sophisticated machine learning model, such as 
an LSTM or a Transformer, to work with a dataset that 
has been significantly structured, denoised, and 
information-rich [67, 68]. This is the rationale for the 
outperformance of such hybrid models relative to their 
individual components, and the superior predictive 
performance has been attributed to the enhanced data 
representation. This thesis demonstrates the versatility 
and effectiveness of this model across markets ranging 
from simple stocks to chaotic cryptocurrencies. 

Despite the positive outcomes of hybrid models, their 
actual use is still hampered by problems. Selecting 
suitable parameters, such as the mother wavelet, 
decomposition level, and thresholding rules, remains very 
important and sometimes tedious, but crucial within the 
context of wavelet analysis. It is still dependent on the 
daily activity data, and forecasting becomes tedious 
within the other boundaries of wavelet analysis. 
Additionally, the complex nature of such systems is prone 
to overfitting, as with other deep learning models, which 
act as major hindrances to interpretability and confidence 
within institutions. Thus, the following steps should 
provide more transparent wavelet methods, along with 
other hybrids. This collection of papers is built on 
cornerstones that provide a controlled wavelet transform 
for predictive analysis. Deep learning systems, which 
provide a paradigm shift from traditional systems, are set 
as the powerful frontier. 

The WT's ability to decompose signals into different 
time-frequency scales at its heart provides a specific 
solution to the problematic aspects of financial time 
series, notably non-stationarity, ubiquitous noise, and 
volatility clustering [81, 92, 93]. The multiresolution 
analysis property of this can help develop two key 
application techniques essential to financial forecasting: 
efficient denoising of financial time series allows 
separation of the underlying model from random noise, 
and feature selection at multiple scales is obtained from 
wavelet coefficients. 

The superior predictive performance of hybrid models 
which combine wavelet features with different machine 
learning and deep learning techniques has been 
consistently corroborated in the literature. This is not a 
trivial increase in performance. It also underscores the 
importance of the quality and representativeness of the 
input data. Noise reduction and structural clarification of 
data with wavelets enable machine learning models to 
work with less chaotic, more organized information. 
Consequently, these models are better at uncovering the 
actual patterns and intricacies of the data. This has been 
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proven in several domains, including the denser domain 
of financial markets —such as traditional stocks and 
cryptocurrencies —where wavelet denoising makes 
pattern recognition more accessible, which would 
otherwise be difficult. 

Although positive, such models have significant 
drawbacks. Parameter tuning of wavelet-based systems is 
not trivial. The numerous adjustable parameters in both 
the wavelet and the machine learning components present 
overfitting risks. Further, the already problematic 
interpretability of these models, due to the "black box" 
nature of complex systems, leads to distrust and non-
adoption, especially in institutions. These challenges 
highlight the advanced but delicate position the field is in. 
There is an extreme need to fine-tune and expand the 
technical approaches to realize the next set of gains. 

Future research, however, has already begun to 
branch into these more innovative, still untapped 
directions. We expect the next wave of breakthroughs to 
emerge from real-time adaptive wavelet techniques that 
select optimal parameters autonomously, as well as from 
the development of more understandable and robust 
hybrid models. Such achievements would both enhance 
the accuracy of these models and the confidence needed 
to deploy them in the intricate financial markets. 

The literature highlights several possible ways to 
address the current shortcomings. One technique is the 
development of adaptive wavelet methods, in which the 
components of the financial time series, such as the 
mother wavelet, decomposition level, and thresholding 
hyperparameters, can change over time. This may 
improve adaptability, robustness, and the overall 
simplicity of the methods by eliminating the need for 
manual tuning. At the same time, other researchers are 
developing more complex hybrid models that incorporate 
new wavelet types and deeper architectures, such as 
Transformers and Graph Neural Networks. These works 
have to be complemented with new developments of 
interpretability, for instance by redesigning attention 
mechanisms to facilitate model explainability. This range 
of activities exemplifies a broader trend in AI, driven by 
the XAI and AutoML movements, to create models that 
are not only powerful but also reliable and explainable. 
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